Synthetic Health Data: The Good, the Bad, and the Ugly

Bradley Malin, Ph.D.

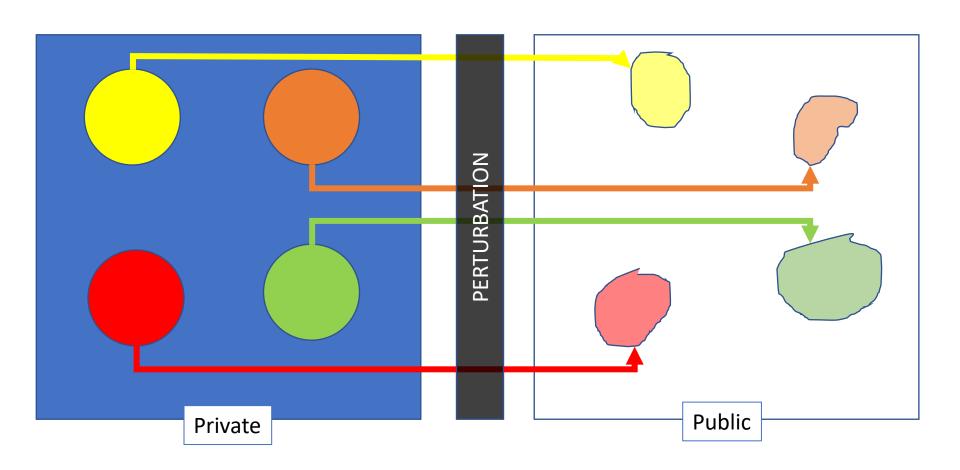
Accenture Professor of Biomedical Informatics, Biostatistics, & Computer Science

Co-Director, Center for Health Data Science

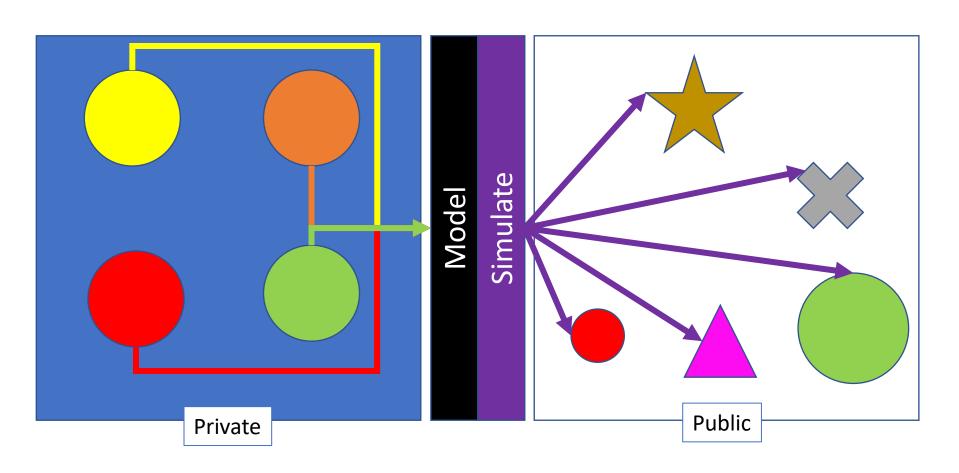
Co-Director, Center for Genetic Privacy & Identity in Community Settings

Co-Director, Big Biomedical Data Science Training Program

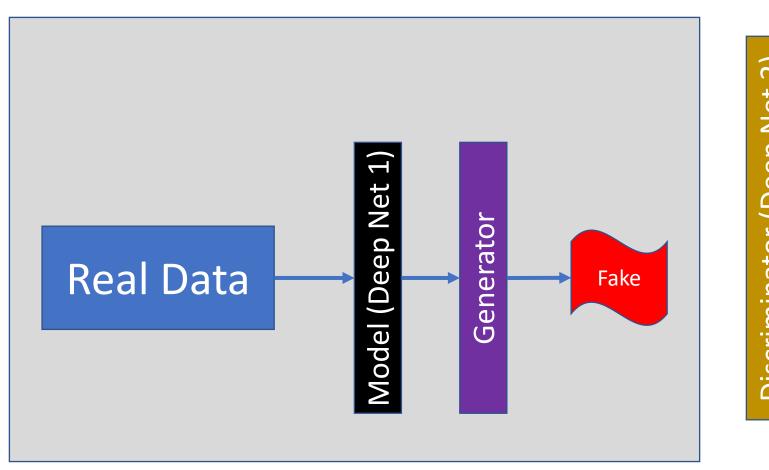
Ways to Generate Synthetic Data: Perturbation



Ways to Generate Synthetic Data: Simulation

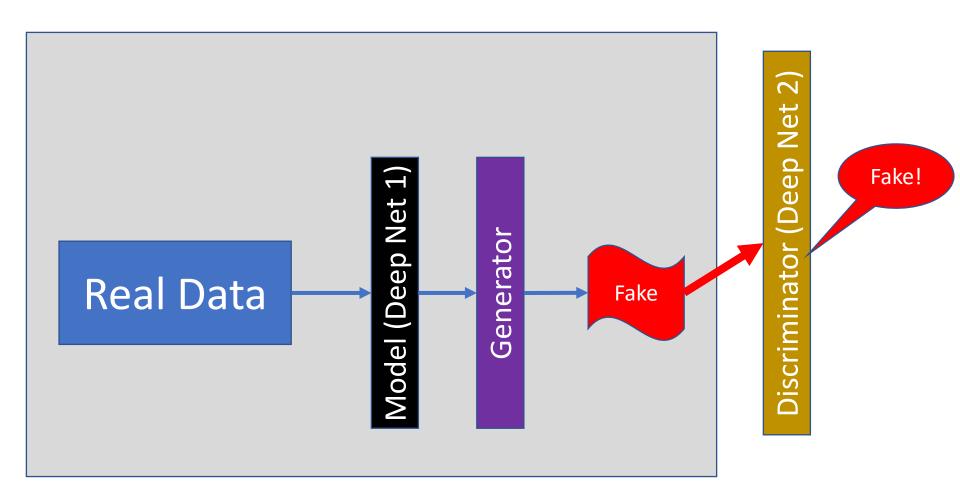


Generative Adversarial Networks: GANs

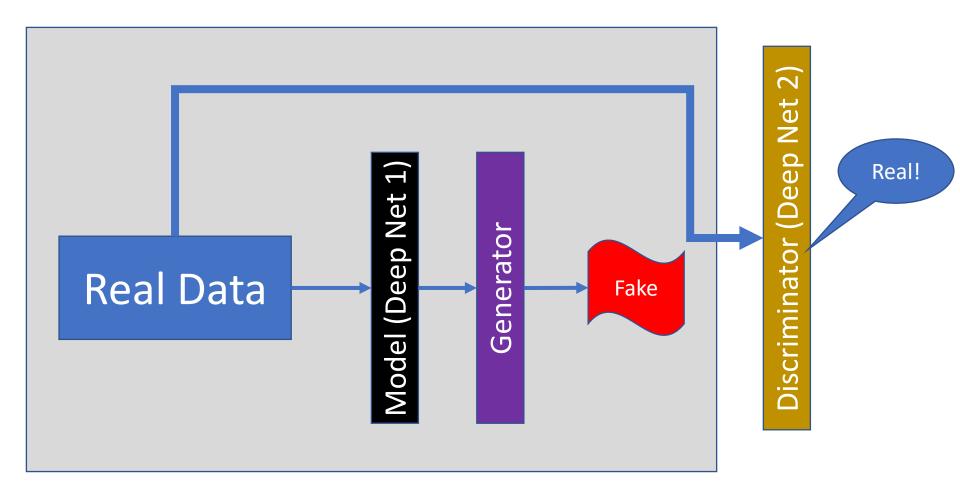


Discriminator (Deep Net 2)

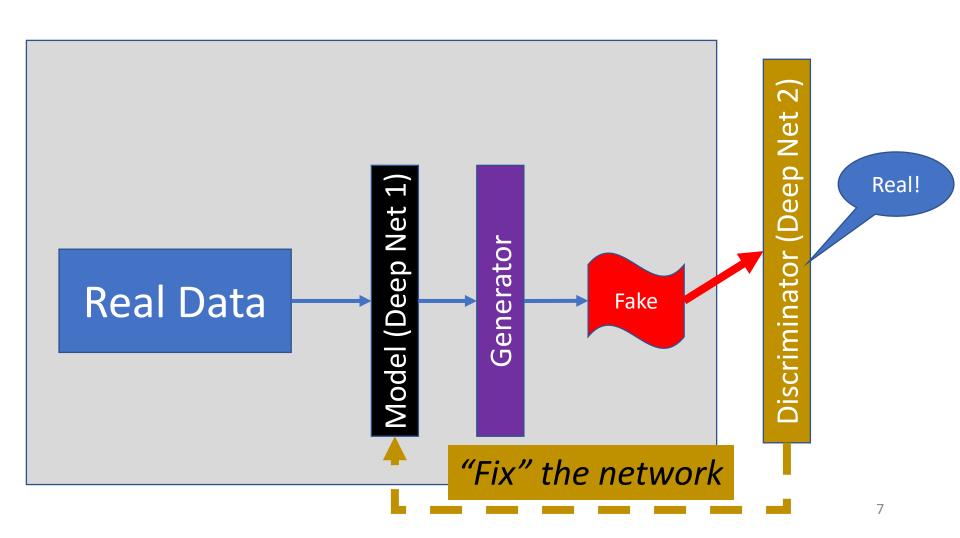
Generative Adversarial Networks: GANs



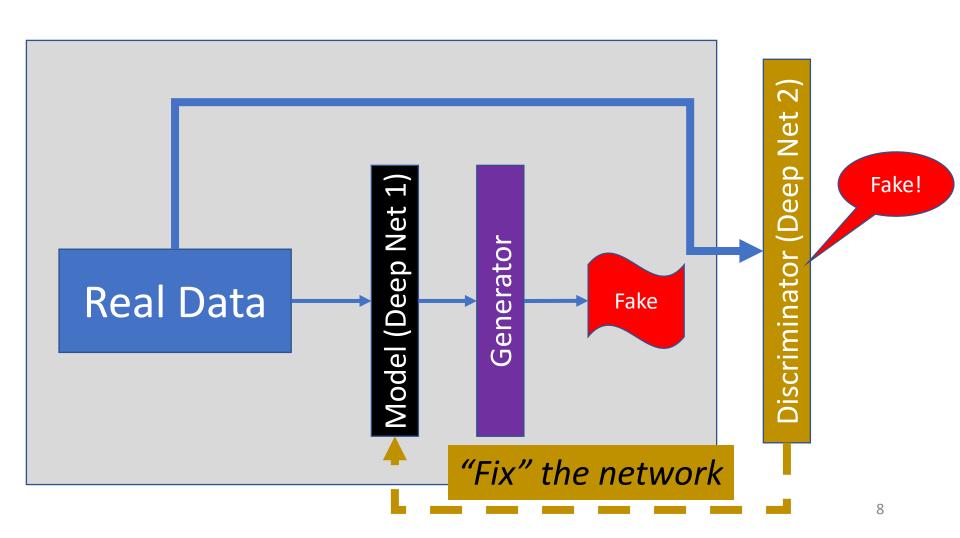
Generative Adversarial Networks: GANs



Playing the GAN Game



Playing the GAN Game



This is Not a New Principle

4.5 years of GAN progress on face generation.

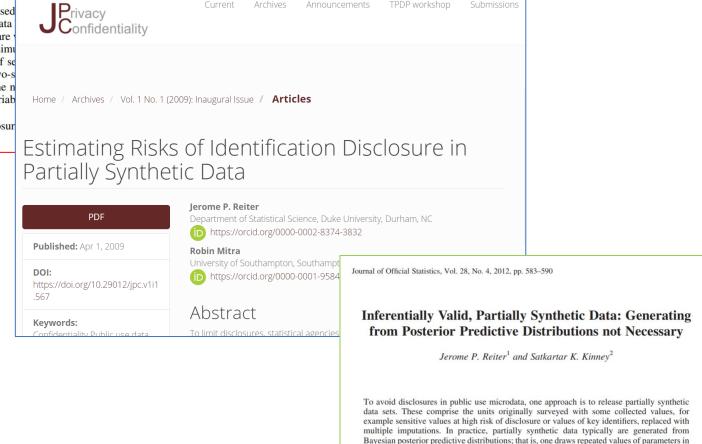
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

Satisfying Disclosure Restrictions With Synthetic Data Sets

Jerome P. Reiter¹

To avoid disclosures, Rubin proposed so that (i) no unit in the released data and (ii) statistical procedures that are. In this article, I show through simu from synthetic data in a variety of se proportional to size sampling, two-s provide guidance on specifying the n the benefit of including design variab

Key words: Confidentiality; disclosur



the synthesis models before generating data from them. We show, however, that inferentially valid, partially synthetic data can be generated by fixing the parameters of the synthesis models at their modes. We do so with both a theoretical example and illustrative simulation studies. We also discuss implications of these results for agencies generating synthetic data.

Key words: Confidentiality; disclosure; imputation; microdata; privacy; survey.

This is Not a New Principle

(Choi MLHC 2017)

Proceedings of Machine Learning for Healthcare 2017

JMLR W&C Track Volume 68

Generating Multi-label Discrete Patient Records using Generative Adversarial Networks

 Edward Choi¹
 MP2893@GATECH.EDU

 Siddharth Biswal¹
 SBISWAL7@GATECH.EDU

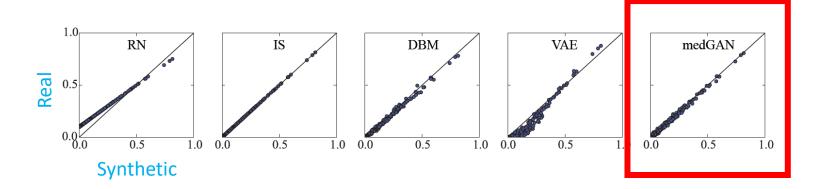
 Bradley Malin²
 BRADLEY.MALIN@VANDERBILT.EDU

 Jon Duke¹
 JON.DUKE@GATECH.EDU

 Walter F. Stewart³
 STEWARWF@SUTTERHEALTH.ORG

 Jimeng Sun¹
 JSUN@CC.GATECH.EDU

- Sutter Health & MIMIC
- Demographics, Diagnoses, Procedures, & Meds
- Prediction of presence / absence clinical concept



 $^{^1}$ Georgia Institute of Technology 2 Vanderbilt University 3 Sutter Health

Limitations

Autoencoder induced noise and hurt learning

 Evaluation measures based on superficial aspects of data gave false impression of merits of simulation

 Focus on all EHR data led to overrepresentation of common associations

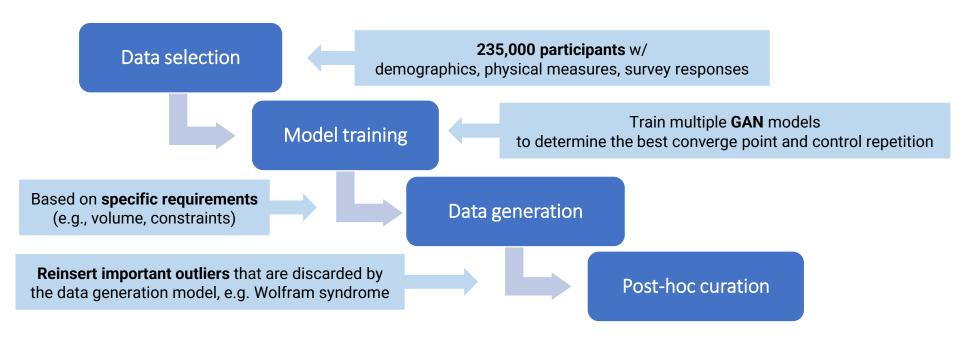
Evolution

 Better training (Wasserstein distance) and evaluation methods (latent dimensions) (Zhang JAMIA 2020)

• Enabling constraints (e.g., preventing women from having prostate cancer) (Yan AMIA 2020)

 Move from static to longitudinal data: think LSTMs + GANs (Zhang JAMIA 2021)

Building a Synthetic Resource



System/software Development

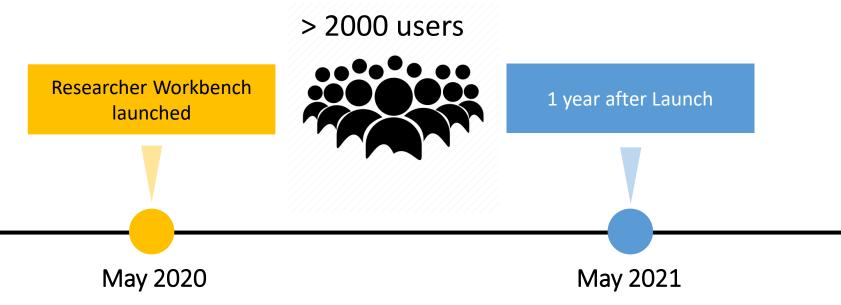
Develop data analytic tools

Test important system features

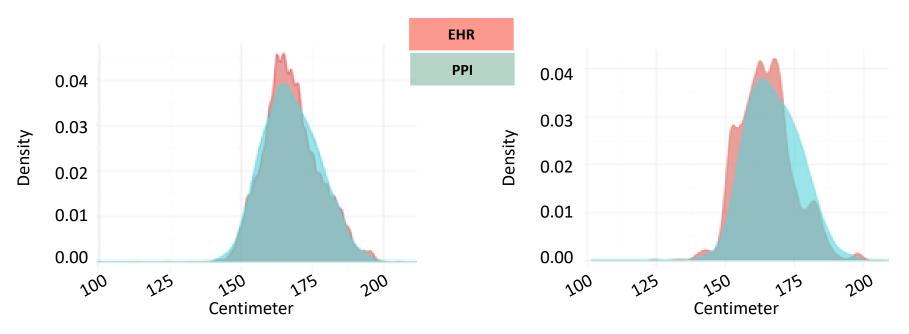
Complete quality control and assurance tasks

Case Study for Demos & Tutorial

> 30 researcher outreach and training events



Real vs Synthetic in the Same Tutorial



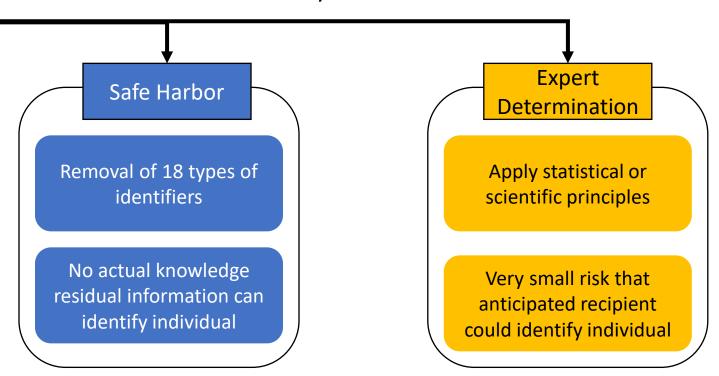
Using *real* data in RW

Using *synthetic* data in mirror RW

Is Synthetic Data "De-identified"?

According to HIPAA (Privacy Rule):

-"information that does not identify an individual and ... no reasonable basis ... information can be used to identify an individual"



What Could Go Wrong?

Al fake-face generators can be rewound to reveal the real faces they trained on

Researchers are calling into doubt the popular idea that deep-learning models are "black boxes" that reveal nothing about what goes on inside

By Will Douglas Heaven

October 12, 2021

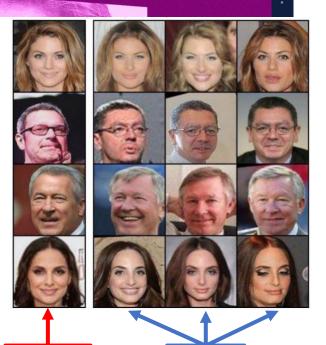
https://arxiv.org/abs/2107.06304

Deep Neural Networks are Surprisingly Reversible: A Baseline for Zero-Shot Inversion

Xin Dong^{1,2}; Hongxu Yin¹, Jose M. Alvarez¹, Jan Kautz¹, and Pavlo Molchanov¹

NVIDIA, ²Harvard University

xindong@g.harvard.edu, {dannyy, josea, pmolchanov, jkautz}@nvidia.com



Real

A Bunch of Things

Mimic

Insufficient training data can lead to "mimicking" of original records

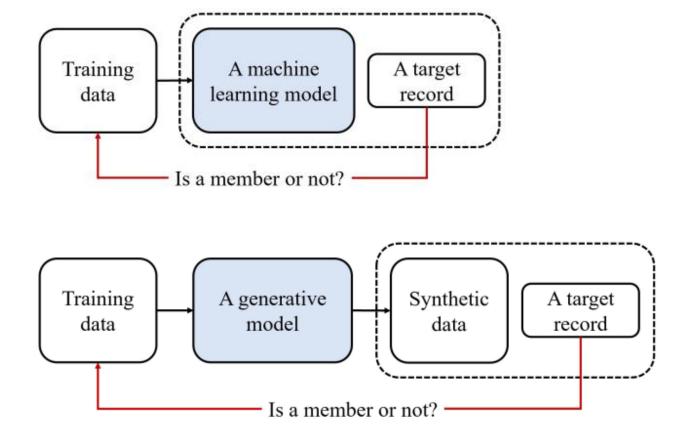
Membership Inference

- User can test if features of someone they know appear to be in the training data
- Requires knowing the features in question

Attribute Inference

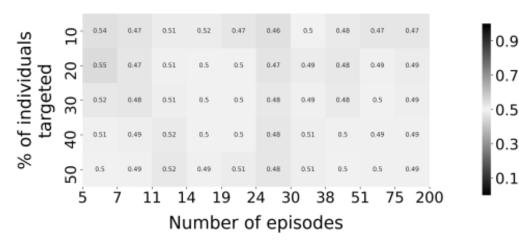
- User can predict features (they don't know) about someone based on features they do know
- Combining Membership and Attribute is where disclosure occurs

Membership Intrusion

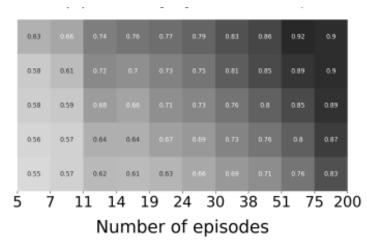


An Attack on VUMC Data

- 45,000 patients, diagnosis and procedure codes
- Up to 200 visits
- Adversary has 10% "prior" knowledge



Fully Synthetic



Partially Synthetic

Context Matters ALOT

- Must define the expected capabilities of the recipients of the data
- Privacy assessments should consider the data, as well as how the data was created
- Must consider the recipient's tolerance for errors
- Most consider society's tolerance for intrusion (and claimed intrusion)

Questions?

b.malin@vanderbilt.edu

Center for Genetic Privacy & Identity in Community Settings https://www.vumc.org/getprecise

Health Data Science Center

https://www.vumc.org/heads