Practical Considerations for Synthetic Data Generation

Khaled El Emam kelemam@ehealthinformation.ca

10th November 2021

Training a generative model often uses a discriminator

Discriminator

Two Synthesis Strategies

quasi-identifiers

Full Synthesis Synthesize all variables

sensitive variables

Synthesis

Se Va

Partial Synthesis Synthesize quasiidentifiers

ensitive ariables	quasi-identifiers	
	Synthesis	
	Electro Heal	onic lth

Information

Laboratory

Privacy-Utility Trade-off

Identity Disclosure Model

Evaluations of (re-)identification risks show that it is low in multiple studies across multiple datasets

Dataset	Fully Synthetic Data
Washington Hospital Data (Discharge)	0.0197
Canadian COVID-19 Data (Public Health)	0.0086

A commonly used risk threshold = 0.09

Original Data 0.098 0.034

Membership disclosure: is the distance between S and D predictive of which records are in the training dataset

7

Comparing real and synthetic data: Adjusted model of impact of bowel obstruction on DFS

Hazard Ratio

CI Overlap

	40%
	42%
	57%
	81%
	86%
	90%
	89%
	89%
	91%
	99%
	88%
6	8

Longitudinal Data Model

Demographics
Age
Sex
Time to last day of follow-up available
Comorbidity score (elixhauser)

Drugs
Dispensed amount quantity
Relative dispensed time in days
Dispensed day supply quantity
Morphine use (binary)
Oxycodone use (binary)
Antidepressant use (binary)

Visits (ED)	
Relative admission time in days	
Problem code 1	
Problem code 2	
Resource intensity weights	
Problem code 2 Resource intensity weights	_

Admissions (Hospital)	
Relative time admitted in days	
LOS	
Diagnosis code 1	
Diagnosis code 2	
Resource intensity weight	

Lab

Test name

Test result (integer)

Relative time in days lab taken

Claims

Primary diagnosis code

Provide specialty

Relative service event start date

Adjusted Cox Regression

Note: Adjusted estimates include the following co-variates: age, sex, antidepressant use, Elixhauser score, ALT, eGFR, HCT; Opioid 1 served as the reference group

Hierarchical datasets require a different approach

SDG References

- Z. Azizi, C. Zheng, L. Mosquera, L. Pilote, K. El Emam: "Replicating Secondary" Studies Using Synthetic Clinical Trial Data", BMJ Open, 11:e043497, 2021.
- K. El Emam, L. Mosquera, E. Jonker, H. Sood: "Evaluating the Utility of Synthetic • COVID-19 Case Data", JAMIA Open, 14(1):ooab012, January 2021.
- K. El Emam, L. Mosquera, and C. Zheng, "Optimizing the synthesis of clinical trial data using sequential trees," JAMIA, 28(1): 3-13, 2021.
- K. El Emam, L. Mosquera, and J. Bass, "Evaluating Identity Disclosure Risk in Fully." Synthetic Health Data: Model Development and Validation," JMIR, vol. 22, no. 11, Nov. 2020.
- K. El Emám, L. Mosquera, and R. Hoptroff, Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data. O'Reilly, 2020.
- K. El Emam, "Seven Ways to Evaluate the Utility of Synthetic Data," IEEE Security and Privacy, July/August, 2020.

