Welcome to the Sentinel Innovation Center Webinar Series

The webinar will begin momentarily

Please visit <u>www.sentinelinitiative.org</u> for recordings of past sessions and details on upcoming webinars.

Exploring the Opportunities and Challenges of Common Data Model Representations of NLP Output of EHR Data

Michael E. Matheny, MD, MS, MPH

Co-Director, Center for Improving the Publics' Health Through Informatics Associate Professor, Departments of Biomedical Informatics, Medicine, and Biostatistics Vanderbilt University Medical Center

> Associate Director for Data Analytics, VINCI Associate Director, Advanced Fellowship in Medical Informatics Tennessee Valley Healthcare System VA

> > **Twitter: @MichaelEMatheny**

Email: michael.Matheny@Vanderbilt.edu, michael.Matheny@vumc.org, michael.Matheny@va.gov

VANDERBILT **W**UNIVERSITY MEDICAL CENTER

Objectives

- Background on Types & Use of NLP
- Describe Foundational Concepts around Data Modeling for EHR-Derived Data
- Challenges In Storing Free Test In A CDM
- NLP Provenance
- Veracity & Mapping Considerations
- Same Framework Applies to Other Derived Data

Natural Language Processing

Information Content In Free Text

Norway 1.1 mil docs 7.7 k pts GI Cancer Pts Docs Processed to MeSH

Kasper Jensen, et al. 2017, Nature Scientific Reports. PMID: 28387314

General Types of Clinical NLP

By Methods Approach

Rule-Based

Terminal Hybrid (Rule Based -> Machine Learning)

Machine Learning

By Output

Curated ("Focused") Clinical Features (Infectious Symptoms, Smoking History, etc)

Generalized Controlled Vocabular Mapping (MedLEE, MetaMap, cTakes/yTEX, KnowledgeMap, CLAMP, and others)

Feature/Vector Generation without CV Mapping (Word2Vec, Doc2Vec, Bag Of Words, and others)

Use of Generalized NLP to Detection Infectious Signs & Symptoms

PMH

- Emergency Department & Primary Care Notes
- Annotation Reference Standard (Supervised)
- Symptom detection
 - Precision: 0.91
 - Recall: 0.84
 - *F* measure 0.87

Example NLP Output (Scrubbed)

^

Madison Wisconsin. cr Since then cr, he denies having had any recurrence of pulmonary tuberculosis. The veteran reports that he is 85 years old now. The does notice some shortness of breath he thinks or probably is because of his age. After walking for about ten minutes he notices some shortness of breath. en He reports that he is able to climb one flight of regular stairs without shortness of breath. re He had smoked cigarettes in the pater, he has quit smoking since 1962. He denies any history of chronic obstructive pulmonary disease or emphysema. No history of any bronchitis reported. cm He denies any history of heart problems. His other medical history includes history of prostate problems hiatal hernia and he does take medication for these conditions. ce He denies any history of fever ce, chills cz, night sweats. cz He denies any history of cough cz or phlegm. He reported that his usual weight is 175-180 pounds. ex At the present time he weighs 164 pounds. ____ He reports that he has lost some weight. ____ He does ce not use any kind of medications ce or any inhalers for breathing. cm Past history of treatment for pulmonary tuberculosis in 1950-1951 with a history of left upper lobectomy ce and treatment in the sanitorium for pulmonary tuberculosis er without any

Source: Matheny ME, et al, Brown SB. Int. J. Biomed. Inform, 2012;81(3):143-56.

Thorough Clinical NLP Review (2009-2019)

ethod Type	Domain	Sub-domain	Data Type
Rule 109 (48%)	Disease study area 124 (54%)	Diseases of the circulatory system 31 (14%) Symptoms, signs, and ill-defined conditions 28 (12%) Neoplasms 21 (9%) Endocrine, nutritional and metabolic diseases, and immunity disorders 10	CN 145 (64%)
Hybrid 51 (22%)	Clinical workflow optimization 59 (26%)	Diseases of the nervous system 8 Diseases of the digestive system 6 Diseases of the musculoskeletal system and connective tissue 6 Mental disorders 5 Diseases of the respiratory system 3 Infectious and parasitic diseases 3 Injury and poisoning 1 Diseases of the genitourinary system 1 Multiple fields 1	Radiology 30 (13%)
ML 49 (22%)	Drug-related studies 36 (16%)	Measurement value extraction 30 (13%) Patient management	CN-Discharge 29 (13%) Pathology 7
Deep 19 (8%)	Social determinants of health 9	Quality control 7 Data privacy 5 Medication extraction 20 (9%) Adverse drug reaction 14 Dosage extraction 2 Data privacy 5	Multiple 6 CN-Psychiatric 4 Echocardiogram 3 Microbiology 2 Claims 1 Operative 1

Sunyang Fu, et al, Hongfang Liu. Aug 2020, JBI. PMID: 32768446.

Some Current State of the Art Examples

Domain	Task	F-Measure	Method	Model
Clinical Workflow Optimization	ID of Risk Factors for CAD	0.93	Deep Learning	BioBERT
Clinical Workflow Optimization	I2b2 2006 1-B Auto De-ID of PHI	0.946	Deep Learning	BioBert
Drug-Related	I2b2 2020/VA medical problem extraction	0.903	Deep Learning	BERT-Large
Drug-Related	I2b2 2009 medications (Detailed sub-features)	0.857	Terminal Hybrid	CRF, SVM, Context Engine
Diseases	ShARe/CLEFE 2013 Named Entity Recognition	0.77	Deep Learning	BERT-Base
Diseases	SemEval 2014 Task 7: ID of Diseases and Disorders	0.807	Deep Learning	BERT-Large
Diseases	SemEval 2014 Task 14: NER & Template Slot Filling	0.817	Deep Learning	BERT-Large

Sunyang Fu, et al, Hongfang Liu. Aug 2020, JBI. PMID: 32768446.

Need for Standardized NLP Output Representation

- Expensive Computation Time For NLP
 - Late Binding (Real Time) of Free Text Large Still Infeasible

 Multi-site analyses benefit strongly from increased standardization of data representations

Common Data Models

Current State: Mature CDM Feature Matrix

Data Domains	I2B2 v1.7.12	PCORNet V5.1	OMOP v6	Sentinel V7.0
Person (Demographics)	Full	Full	Full	Full
Person Relationship (Family)	No	No	Full	Partial (Mom-Infant)
Enrollment	Yes	Full	Full	Full
Encounters	Yes	Full	Full (\$)	Full
Medications	Partial	Full	Full (+,\$)	Full
Medical Devices	Generic (EAV)	Generic (EAV)	Full (\$)	No
Diagnosis	Generic	Full	Full (+)	Full
Procedures	Generic	Full	Full (+,\$)	Full (\$)
Provider	Yes	Yes	Yes	Embedded
Death	Generic	Full	Full	Full
Laboratory	Generic	Full	Full	Full
Free Text	Generic (EAV)	Generic (EAV)	Full	No
Vaccination	Generic	Generic	Generic	Full
Vital Signs	Generic	Full	Generic	Full
Meta Features				
Single Controlled Vocabulary Per Domain	No	Yes	Yes	No
User Community for Data Visualization and Statistical Module Building	Yes	Yes	Yes	Yes
"Catch All" Table (EAV), allows 'all other' facts storage (counted Generic)	Yes	Yes	Yes	No
Derived tables for Eras or Duration (represented with + in-table)	No	No	Yes	No
Health Economics / Cost Tables (represented with \$ in-table)	Generic	No	Yes	No

I2B2 Star Schema

i2b2 Informatics for Integrating Biology & the Bedside

https://www.i2b2.org/events/slides/Workshop1.pdf - Shawn Murphy, Vivian Gainer (Source)

PCORNet v5.1 pcornet[®] The National Patient-Centered Clinical Research Network

PCORnet Common Data Model v5.1

New to v5.0

DEMOGRAPHIC	LAB_RESULT_CM	VITAL	PCORNET_TRIAL	OBS_CLIN
PATID	LAB RESULT CM ID	VITALID	PATID	OBSCLINID
ETC	PATID	PATID	TRIALID	PATID
PAT PREF LANGUAGE SPOKEN	RESULT DATE	MEASURE_DATE	PARTICIPANTID	ENCOUNTERID
	LAB RESULT SOURCE	VITAL SOURCE	ETC	OBSCLIN_PROVIDERID
	LAB LOINC SOURCE	ETC		OBSCLIN_DATE
ENCOUNTER	ETC		DDD CM	OBSCLIN_TIME ODSCLIN_TYPE
ENCOUNTERID	RESULT_SNOMED	ENDOUL MENT	РКО_СМ	OBSCLIN_TITE OBSCLIN_CODE
PATID		ENKOLLMENT	PRO_CM_ID	ETC
ADMIT_DATE	PRESCRIPTING	PATID	PATID	OBSCLIN SOURCE
ENC_TYPE	PRESCRIBING	ENR_START_DATE	ENCOUNTERID	ETC
ETC	PRESCRIBINGID	ENR_BASIS	PRO DATE PRO TIME	RAW_OBSCLIN_UNIT
PAYER TYPE PRIMARY	PATID	ETC	PRO_TVPE	
PAYER TYPE SECONDARY	ETC		PRO_ITEM_NAME	OBS GEN
FACILITY TYPE	RX_DOSE_ORDERED_UNIT	DEATH	PRO ITEM LOINC	ORCORNER
	RX_DOSE_ORDERED_UNIT	DEATH	PRO RESPONSE TEXT	OBSGENID
	RX_ROUTE RX_SOURCE	PATID	PRO RESPONSE NUM	ENCOUNTERID
DIAGNOSIS	RX DISPENSE AS WRITTEN	DEATH_SOURCE	PRO_METHOD	OBSGEN PROVIDERID
	RX PRN FLAG	ETC	PRO_MODE	OBSGEN DATE
DIAGNOSISID			PRO_CAT	OBSGEN TIME
PATID			PRO SOURCE	ETC
DX	DISPENSING	DEATH_CAUSE	ETC	OBSGEN SOURCE
DX_TYPE	D KONCOLOUD	PATID		RAW_OBSGEN_UNIT
DX_SOURCE	DISPENSINGID	DEATH_CAUSE		
DX_DATE	PATID	DEATH_CAUSE_CODE	IMMUNIZATION	
ETC	DISPENSE_DATE	DEATH CAUSE TYPE	IMAGUAZATION	LDS_ADDRESS_HISTORY
DX_POA	NDC DISPENSE SOURCE	DEATH CAUSE SOURCE	IMMUNIZATIONID	ADDRESSID
	DISPENSE SOURCE	ETC	PAID	PATID
	ETC		VX_CODE TVPE	ADDRESS USE
PROCEDURES	DISPENSE DOSE DISP_UNIT		VX CODE TITE	ADDRESS TYPE
TROCEDORES	DISPENSE_ROUTE	PROVIDER	ETC	ADDRESS PREFERRED
PROCEDURESID		PROVIDERID		FTC
PATID		PROVIDER SEX		
PX	MED_ADMIN	PROVIDER_SPECIALTY_PRIMARY		
PX_TYPE	MEDADMINID	PROVIDER_NPI	HASH TOKEN	
ETC	PATID	PROVIDER_NPI_FLAG		
PPX	MEDADMIN_START_DATE		PATID	
	ENCOUNTERID	HARVEST	TOKEN_01	
CONDITION	MEDADMIN START TIME		EIC	
CONDITIONID	MEDADMIN_STOP_DATE	NETWORKID	TOKEN_16	
PATID	MEDADMIN STOP TIME	DATAMARTID		
CONDITION	PRESCRIBINGID	ETC]	
CONDITION TYPE	ETC			
CONDITION_TITE CONDITION_SOURCE	MEDADMIN SOURCE			
ETC SOURCE	-	1		
<i>B1</i> 0				

Bold font indicates fields that cannot be null due to primary key definitions or record-level constraints.

Sentinel v7

		Administr	ative Data			Clinica	al Data	
Enrollment	Demographic	Dispensing	Encounter	Diagnosis	Procedure	Lab Result	Vital Signs	
Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	
Enrollment Start &	Birth Date	Dispensing Date	Service Date(s)	Service Date(s)	Service Date(s)	Result & Specimen	Measurement Date	
End Dates	Sex	National Drug Code	Encounter ID	Encounter ID	Encounter ID	Collection Dates	& Time	
Drug Coverage	Zip Code	(NDC)	Encounter Type and	Encounter Type and Provider	d Encounter Type and Provider	Test Type, Immediacy & Location	Height & Weight	
Medical Coverage	Etc.	Days Supply	Provider				Diastolic & Systolic	
Medical Record		Amount Dispensed	Facility	Diagnosis Code &	Procedure Code &	Logical Observation Identifiers Names	BP	
Availability			Etc.	Туре	Туре		Tobacco Use & Typ	
				Principal Discharge	Etc.	and Codes (LOINC [®])	Etc.	
				Diagnosis		Etc.		
	Registry D	Data		Inpatient	Data	Mother-Infan	t Linkage Data	
Death	Cause of De	ath State Va	cine Inpatient Pharmacy		Inpatient Transfusion	Mother-In	fant Linkage	
Patient ID	Patient ID	Patient	: ID	Patient ID	Patient ID	Moti	her ID	
Death Date	Cause of Dea	th Vaccinatio	n Date Admin	Administration Date & Administration Start & Mother Birth Date		Birth Date		
			-	Time	End Date & Time			

Death	Cause of Death	State Vaccine	
Patient ID	Patient ID	Patient ID	
Death Date	Cause of Death	Vaccination Date	
Source	Source	Admission Date	
Confidence	Confidence	Vaccine Code & Type	
Etc.	Etc.	Provider	
		Etc.	

Encounter ID National Drug Code (NDC) Route Dose Etc.

Encounter ID Transfusion Administration ID **Transfusion Product** Code Blood Type

Etc.

Encounter ID & Type Admission & Discharge Date Child ID Child Birth Date Mother-Infant Match Method

Etc.

OMOP CDM v6.0

OHDS

https://github.com/OHDSI/CommonDataModel

OMOP Note Domain

- Data Elements
 - Patient ID
 - Provider ID
 - Linked Encounter
 - Type of Event for Note
 - HL7 LOINC Document Type Vocabulary
 - Free Text Note Title
 - Date/Time of Authorship

OMOP Note NLP Domain

- Data Elements
 - Link to NOTE Table (Source Document)
 - Text and words around text
 - Mapping to a Standardized Vocabulary concept
 - NLP Algorithm/Tool ID
 - Date/Time of Output Concept
 - Date/Time of NLP processing
 - Free Text Note Title
 - Modifiers & Temporal Terms

Common Data Model Harmonization Project

Data Flow Steps:

- Query composed using a standard format (e.g FHIR, BRIDG), & translated for distribution
- 2 Distribute queries in native format acceptable for each Data Partner Organization
- 3 Execute query within the Data Partner environment in native formats

Results are translated to standards (FHIR, BRIDG and SDTM) as needed

- Interoperability Project
- FDA Led
 - NCI, NCATS, ONC, NLM participating
- Decision to create an intermediate data model: BRIDG
- Provides operability to:
 - PCORNet
 - Sentinel
 - OMOP
 - Ib2b
- Released 04/19, still uncertain how accurate

https://build.fhir.org/ig/HL7/cdmh/cdmh-overview.html

Challenges to Translating NLP to a CDM

Challenges in Framing Standardized NLP Outputs

- <u>Relevance</u>: Most tasks do not need or want **ALL** clinical text as inputs
- <u>Standardization</u>: NLP outputs benefit from structured mappings to be downstream usable
- <u>Veracity</u>: How to represent differential veracity of output?
- <u>Portability:</u> Need to Incorporate Local Updating in Features (Prior Sentinel Presentation) or Algorithm
- <u>Provenance</u>: Necessary to retain provenance of source and transformation process

Representation of Source Text Data

- For Scalability and Re-usability, need to have standardized data elements:
 - Note Content
 - Date/Time of Creation
 - Note Title and Context Meta-Data
 - Author and Co-Signer (and specialty)
 - Episode of Care / Encounter / Visit

Under-	Specifica	ation of I	Docume	nt Titles			
LOINC Document Ontology Axes Subject Matter Domain Type of Service Role Setting Kind of Document							
LOINC DO Axis	West Campus note titles (1644)	West Campus Classification Rate	East Campus note titles (1124)	East Campus Classification Rate			
Subject Matter Domain	1111	67.6%	777	69.1%			
Type of Service	977	59.4%	776	69.0%			
Role	569	34.6%	629	56.0%			
Setting (no default value)	475	28.9%	143	12.7%			

8.2%

80

7.1%

New York Presbyterian Hospital (NYPH)

135

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243240/

Map to no axis

Opportunity to Augment Document Title Labeling

Lab Test LOINC Noisy Labeling

- 6.5 billion VA laboratory tests
- 130 Facilities
- 2215 LOINC Codes
- 29% LOINC Missing
- Unsupervised ML with partial or noisy labels, mapped a large portion of laboratory tests without LOINC to correct LOINC Codes
- Unlabeled Laboratory Data:
 - Correctly mapped 84.5% of tests that were not labeled
 - Fixed 1.1% mapped tests that were wrong

Source: Parr SK, et al, Matheny ME. JAMIA 2018; 25:1292-1300.

Standardization of NLP Outputs

- Word Vector or Non-Standardized Feature
 - Recommend Require Mapping to Controlled
 Vocabulary for use in CDM
 - Some feature generation can be used in
 supervised machine learning tasks downstream
 BUT harder to standardize outputs

Use of Controlled Terminologies

Most Common:

ICD9/10 CPT SNOMED-CT LOINC RxNorm MedDRA

Bodenreider, BIB 2006, LOINC & RxNorm additions Michael Matheny

Key Issues for Mapping Standardization

- Do you store mapped NLP outputs in a separate table structure?
- Do you merge NLP outputs with other data types with provenance?
- What threshold of veracity should be used to include in data model?
- Temporality terms may represent time state different than text note (HARD!)
- Negation negated terms... ignore or map separately?

Example: Mapping Coverage

Terminal Hybrid NLP Tool (Moonstone - Chapman)

Developed for NLP Task For Hospital Readmission Prediction

NLP-derived Variable	NLP representation	Structured Data Proxy	Vocabulary Mapping
Living Alone	Positive, negative,	Marital Status (Partial)	ICD Code
	uncertain, no data		
Instrumental Support	Positive, negative,	Health insurance type	NONE (PRO Only)
	uncertain, no data	(Partial)	
Impaired ADL/IADL	Positive, negative,	Partial / Varies	Aggregate, Base Eval SNOMED, LOINC, but impaired
	uncertain, no data		status represented as value
Medical Condition	Positive, negative,	Varies / (ICD/CPT Codes)	ICD OR CPT Code
(causing impaired ADL)	uncertain, no data		
Medication Compliance	Positive, negative,	Prescription fill gaps	SNOMED-CT
	uncertain, no data		
Depression	Positive, negative,	Admin Codes	ICD code
	uncertain, no data		
Dementia	Positive, negative,	Admin Codes	ICD code
	uncertain, no data		
Language Barrier	Positive, negative,	None	SNOMED-CT
	uncertain, no data		

Ruth Reeves, Framework for Targeted NLP Output Mappings, 2020, Unpublished

Veracity: How Accurate is Enough?

- How accurate is enough?
- Concept: F-Measure: mean of Precision & Recall Document/Patient Case: Sensitivity & Specificity
- Usually requires some silver or gold standard to evaluate performance on (annotation or noisy label)
- Storage and Reference Retention of Performance Also Important For Re-Use

Targeted Example: AKI Risk Factors

Category	Instances	ТР	FP	FN	Precision (PPV)	Recall (Sensitivity)	F-Measure
Drug Exposures							
ACE Inhibitor	575	553	8	22	0.986	0.962	0.974
• ARB	149	137	0	12	1.000	0.919	0.958
• Diuretic	733	684	4	49	0.994	0.933	0.963
NSAID	233	201	4	32	0.980	0.863	0.918
Fluid Status							
• Diuresis	118	83	6	35	0.933	0.703	0.802
• Intake	694	412	46	282	0.900	0.594	0.715
 Intravascular Volume Condition 	527	432	12	95	0.973	0.820	0.890
 Nausea/Vomiting/Diarrhea 	719	674	25	45	0.964	0.937	0.951
Weight Change	221	130	14	91	0.903	0.588	0.712
Radiographic Media Exposure							
Contrast	2095	1858	240	237	0.886	0.887	0.886
 Potential Contrast 	439	255	65	184	0.797	0.581	0.672
Contrast Volume	4	0	0	4	-	0.000	0.000
Renal Status							
 Anatomical Kidney Status 	57	9	4	48	0.692	0.158	0.257
 Nephrology Care Delivery 	210	141	36	69	0.797	0.671	0.729
 Renal Function Impairment 	449	368	44	81	0.893	0.820	0.855
 Renal Transplant Recipient 	8	0	0	8	-	0.000	0.000
Total Concept Performance	7231	5661	341	1570	0.921	0.821	0.868

Category	Instances	ТР	FP	FN	TN	Sensitivity	Specificity	NPV
Negation Performance		351	333	17	1049	0.954	0.759	0.984

Provenance

- What level of NLP intermediate products to retain for re-use and provenance:
 - Words mapped?
 - Position in document?
 - Algorithm used? Version? Algorithmic Coefficients?
 - Date processed?

Portability: Local Updating

Table 1. Corpus statistics of Mayo Clinic and SCH (n = 298 patientseach)

Category	Mayo	SCH
Total no. of documents	9604	30 589
Total no. of tokens	2 212 389	10 117 963
No. of documents/patient, median (IQR)	27 (18)	80 (69.8)
No. of tokens/document, median (IQR)	186 (210)	103 (331)
No. of asthma-related concepts ^a /patient, median (IQR)	19.5 (32.8)	65.5 (88)
No. of asthma-related concepts/document, median (IQR)	2 (3)	1 (2)
No. of note types	16	32
No. of sections	17	54

Figure 2. Distribution of asthma-related concepts.

^aEach concept consists of a set of keywords. IQR: interquartile range.

Table 3. NLP-PAC performance for asthma ascertainment (Mayo vs Sanford)

Metrics	Мауо	SCH Stage 1 (prototype)	SCH Stage 2 (refinement)
Sensitivity	0.972	0.840	0.920
Specificity	0.957	0.924	0.964
PPV	0.905	0.788	0.896
NPV	0.988	0.945	0.973
F-score	0.937	0.813	0.908

Koola JD, et al, Matheny ME. J. Biomed. Inform. 2018; 80:87-95.

Conclusions

- Standardized Representation of NLP Outputs is important for Scalability in Sentinel
- Key Challenges in Implementation:
 - Representation in CDM
 - Where to put Outputs (Embedded vs Separate)
 - Updating Algorithms for Local Environment
 - Documenting Performance
 - Maintaining Provenance
- Keep other Use Cases in Mind (Probabilistic Phenotyping)

Questions?

Michael E. Matheny, MD, MS, MPH Twitter: @MichaelEMatheny Email: <u>michael.Matheny@Vanderbilt.edu</u> <u>michael.Matheny@vumc.org</u> <u>michael.Matheny@va.gov</u>