Welcome to the Sentinel Innovation Center Webinar Series

The webinar will begin momentarily

 for recordings of past sessions and details on upcoming webinars.Note: closed-captioning for today's webinar will be available on the recording posted at the link above.

Harmonizing Electronic Health Records from Heterogeneous Systems via Automated Translation of Medical Concepts

Xu Shi
Department of Biostatistics, University of Michigan

August 19, 2020

Andrew Beam Assistant Professor Dept. of Epidemiology Harvard University

Xiaoou Li
Assistant Professor School of Statistics University of Minnesota

Tianxi Cai
Professor
Dept. of Biostatistics
Dept of Biomedical Informatics
Harvard University

Hristina Pashova
Biostatistics
Corcept Therapeutics

Patrick Heagerty
Professor
Dept. of Biostatistics University of Washington

W UWMedicine
SCHOOL OF MEDICINE

Demand for health information exchange

- Goodbye "meaningful use", hello "promoting interoperability"
o Centers for Medicare \& Medicaid Services (CMS) renamed EHR incentive program
O To advance integration and sharing of healthcare data

BREAKING: CMS Finalizes "Promoting Interoperability" Rule

```
August 2, 2018 by Rajiv Leventhal
```


fin

The federal agency has finalized 90-day reporting periods for 2019 and 2020, while requiring 2015 CEHRT starting in 2019

Just three months after issuing a proposal, the Centers for Medicare \& Medicaid Services (CMS) has finalized a rule late this afternoon that will overhaul the meaningful use program with a core emphasis on advancing health data exchange among providers.

The final rule issued today makes updates to Medicare payment policies and rates under the Inpatient Prospective Payment System (IPPS) and the Long-Term Care Hospital (LTCH) Prospective Payment System (PPS) that will incentivize value-based, quality care at these facilities.
"We're excited to make these changes to ensure care will focus on the patient, not on needless paperwork," CMS Administrator Seema Verma said in a statement. "We've listened to patients and their doctors who urged us to remove the obstacles getting in the way of quality care and positive health outcomes. Today's final rule reflects public feedback on CMS proposals issued in April, and the agency's patient-driven priorities of improving the quality and safety of care, advancing health information exchange and usability, and removing outdated or redundant regulations on healthcare providers to make way for innovation and greater value."

According to CMS, the rule applies to about 3,300 acute care hospitals and 420 long-term care hospitals, and will take effect Oct. 1

Semantic interoperability: EHRs do not talk to each other

- 786.2 Cough (ICD-9)	lab_type	result	units
	HEMOGRAM PLATELET COUNT	154	x10 3/uL
780.61 Feve	HEMOGRAM RED BLOOD CELL COUNT	4.59	x10 $6 / \mathrm{uL}$
	HEMOGRAM RED CELL DISTRIBUTION WIDTH	20.4	\%
	HEMOGRAM WHITE BLOOD CELL COUNT	6.6	x10 3 /uL
** PHYSICIAN NOTE ***			
History of Present IIIness			
Presenting problem started 5 days ago. History comes from patient. Able to get a good history. Presents with symptoms suggestive of a lower GI bleed. This is a new problem, with no prior history of similar episodes. Symptoms developed over several days. Describes stool as black in color. Passing mucoid stools. Streaks of blood noted in stool. Saw gross blood in the bowel movement. Not on iron or Pepto bismol. Estimated blood loss is less than 50 cc . No 			

- Standardized medical code for billing :)
o Common language across healthcare providers and insurers
- Inconsistent coding in practice $)$
o System A use 786.05: shortness of breath
o System B use 786.09: other dyspnea and respiratory abnormality

What are potential challenges?

What are potential challenges?

Common Data Model

What are potential challenges?

Common Data Model

What are potential challenges?

Common Data Model

786.05: shortness of breath

Phenotyping Algorithm Or Causal Inference

Anaphylaxis

What are potential challenges?

Common Data Model

786.09: dyspnea and respiratory abnormality

Phenotyping Algorithm
Or Causal Inference

What are potential challenges?

- Performance of phenotyping algorithm can dramatically drop
- Causal inference can fail due to incorrect confounding adjustment

Manual mapping is imprecise

- General equivalence mapping (GEM): ICD-9 (10k) \leftrightarrows ICD-10 (60k)
o Approximate mappings with multiple scenarios: data merged with adhoc decisions

1:1 Exact Map

The ICD-9/10 maps to a group of ICD-10/9 codes, which must be taken together in order to have a similar clinical meaning to the

1: Many Approximate Cluster ('ORs')

The ICD-9/10 maps to multiple ICD-10/9 codes. However, only one of these ICD codes will be required

1: Many Complex ('ANDs' and 'ORs')

Scenario-1

[^0]
Data Driven Mapping of Medical Codes

The Back pain Outcomes using Longitudinal Data study

- The elderly with back pain
o 5000 patients ≥ 65 years old
o Cost-effectiveness of early diagnostic imaging
- EHR data from three sites:
o Henry Ford Health System in Detroit
o Kaiser Permanente Northern California
o Harvard Vanguard in Boston

Data quality check before pulling EHR data from study sites

- Compare use of CPT codes between study sites

- Question: can we scan for variation in the endorsement of all medical codes to identify such data quality issue?

Detect and quantify coding differences under a hierarchical structure

- Code grouping e.g. PheWAS (phenome-wide association studies) CCS (Clinical Classifications Software)

Estimation:

hierarchical shrinkage post-regularization inference

CPT-SCAN: https://xu-rita-shi.shinyapps.io/CPT_SCAN/
Shi et. al. (2017)

Further investigation into observed differences in code endorsement

- Compare use of CPT codes between study sites

- Henry Ford uses a generic code "HFOPT" for physical therapy

Can data tell me "HFOPT" = "physical therapy"?

- Co-occurrence: semantic information from the context
o "HFOPT" is surrounded by codes for pain-related diseases or treatments
o "Physical therapy" often appears in such a context

Computers learn the meaning of a word from its context

- word2vec: represent a word as a vector
o Learn semantic relationship from co-occurrence
o Words with similar meanings are close
-250.00 (Diabetes-non insulin dependent)
- 790.29 (Other abnormal glucose)
-714.0 (Rheumatoid arthritis)
-710.0 (Systemic lupus erythematosus)
-443.0 (Raynaud's syndrome)

Computers learn the meaning of a word from its context

- word2vec: represent a word as a vector
o Learn semantic relationship from co-occurrence
o Words with similar meanings are close
- code2vec: represent a code as a vector
o Code \Leftrightarrow word; Healthcare system \Leftrightarrow language
O Interpret meaning of codes in clinical practice setting

Question: can we infer a mapping between two sets of code-vectors learned from two healthcare systems, respectively?

From language translation to code mapping

- Inconsistent objectives in language translation with word2vec

Generate word vectors \rightarrow

Space alignment \rightarrow

Infer a mapping
max inner product

$\min \ell_{2}$ distance

max cosine

From language translation to code mapping

- Inconsistent objectives in language translation with word2vec

Generate word vectors \rightarrow Space alignment \rightarrow Infer a mapping
max inner product

$\min \ell_{2}$ distance max cosine

- Length normalization: semantic information is in the direction

Partners HealthCare

Veterans Health Administration

How do statisticians think about language translation?

$$
\mathbb{X}=\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right]_{n \times p}^{\top}, \mathbb{Y}=\left[\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right]_{n \times p}^{\top}: n \text { vectors, each } \mathbf{X}_{i}, \mathbf{Y}_{i} \in R^{p}
$$

- n : number of codes
- p : dimension of code-vectors

$\mathbb{Y}_{n \times p}$
1 1
2

$\mathbb{X}_{n \times p}$
1 1
2

How do statisticians think about language translation?

- Classical regression
$\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

How do statisticians think about language translation?

- Classical regression

$$
\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}
$$

$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

- Shuffled regression
$\mathbb{Y}_{n \times p}=\Pi_{n \times n} \mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ may not correspond

Introduce a mapping matrix Π (the "dictionary")

 no mismatch if $\Pi=\mathbb{I}$ is an identity matrixHow do statisticians think about language translation?

- Classical regression

$$
\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}
$$

$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

- Shuffled regression
$\mathbb{Y}_{n \times p}=\Pi_{n \times n} \mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ may not correspond

\mathbb{Y}_{n}			$\Pi_{n \times n}$		$\mathbb{X}_{n \times p}$			$\mathbb{W}_{p \times p}$	$+\mathbb{U}_{n \times p}$
1	1					2	2		
2	2					1	1		
3	3	\square				3	3		
4	4					4	4		
5	5					5	5		

Each row of Π is like a pointer:
match: $\Pi_{i .}=\mathbb{I}_{i} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{i}$; mismatch: $\Pi_{i .}=\mathbb{I}_{j} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{j}$

How do statisticians think about language translation?

- Classical regression

$$
\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}
$$

$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

- Shuffled regression
$\mathbb{Y}_{n \times p}=\Pi_{n \times n} \mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ may not correspond

$\mathbb{Y}_{n \times p}$			$\Pi_{n \times n}$			$\mathbb{X}_{n \times p}$			$\mathbb{W}_{p \times p}$
1	1					2		2	
2	2					1		1	
3	3	『				3		3	
4	4					4		4	
5						5		5	

Each row of Π is like a pointer:
match: $\Pi_{i .}=\mathbb{I}_{i} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{i}$; mismatch: $\Pi_{i}=\mathbb{I}_{j} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{j}$

How do statisticians think about language translation?

- Classical regression

$$
\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}
$$

$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

- Shuffled regression
$\mathbb{Y}_{n \times p}=\Pi_{n \times n} \mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ may not correspond

Each row of Π is like a pointer:
match: $\Pi_{i .}=\mathbb{I}_{i} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{i}$; mismatch: $\Pi_{i .}=\mathbb{I}_{j} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{j}$

How do statisticians think about language translation?

- Classical regression

$$
\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}
$$

$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

- Shuffled regression
$\mathbb{Y}_{n \times p}=\Pi_{n \times n} \mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ may not correspond

Each row of Π is like a pointer:
match: $\Pi_{i .}=\mathbb{I}_{i} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{i}$; mismatch: $\Pi_{i .}=\mathbb{I}_{j} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{j}$

How do statisticians think about language translation?

- Classical regression

$$
\mathbb{Y}_{n \times p}=\mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}
$$

$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ correctly linked

- Shuffled regression
$\mathbb{Y}_{n \times p}=\Pi_{n \times n} \mathbb{X}_{n \times p} \mathbb{W}_{p \times p}+\mathbb{U}_{n \times p}$
$\mathbf{Y}_{i} \sim \mathbf{X}_{i}$ may not correspond

Each row of Π is like a pointer:

match: $\Pi_{i .}=\mathbb{I}_{i} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{i} ;$ mismatch: $\Pi_{i}=\mathbb{I}_{j} . \Rightarrow \mathbf{Y}_{i} \sim \mathbf{X}_{j}$

Formulating the problem: mismatched spherical data

- Π encodes 1-to-1 and 1-to-many mapping

Allow for 1-to-many mapping weight vector: $\Pi_{i}=\omega$

The statistical problem: mismatched spherical data

- Π encodes 1-to-1 and 1-to-many mapping
- Assume Π is block diagonal

Incorporate code-group information mismatch only occurs within group

The statistical problem: mismatched spherical data

- Π encodes 1-to-1 and 1-to-many mapping
- Assume Π is block diagonal
- \mathbb{W} is an orthogonal matrix s.t. $\left\|\mathbb{W} \mathbf{X}_{i}\right\|=\left\|\mathbf{Y}_{i}\right\|=1$

\mathbb{W} rotates \mathbb{X} on the sphere Align spherical language spaces

The statistical problem: mismatched spherical data

- Π encodes 1-to-1 and 1-to-many mapping
- Assume Π is block diagonal
- \mathbb{W} is an orthogonal matrix s.t. $\left\|\mathbb{W} \mathbf{X}_{i}\right\|=\left\|\mathbf{Y}_{i}\right\|=1$

iSphereMAP: iterative Spherical regression MAPping

iSphereMAP: iterative Spherical regression MAPping

- Find rotation via spherical regression

$$
\begin{aligned}
& \widehat{\mathbb{W}^{[1]}}=\underset{\mathbb{W}: \mathbb{W} \mathbb{W}^{\top}=\mathbb{I}_{p}}{\operatorname{argmin}}\|\mathbb{Y}-\mathbb{X}\|_{F}^{2}=U V^{\top} \\
& \text { where } \mathbb{X}^{\top} \mathbb{Y}=U D V^{\top}
\end{aligned}
$$

iSphereMAP: iterative Spherical regression MAPping

iSphereMAP: iterative Spherical regression MAPping

- Find rotation via spherical regression

$$
\begin{aligned}
& \widehat{\mathbb{W}}^{[1]}=\underset{\mathbb{W}: \mathbb{W} \mathbb{W}^{\top}=\mathbb{I}_{p}}{\operatorname{argmin}}\|\mathbb{Y}-\mathbb{X}\|_{F}^{2}=U V^{\top} \\
& \text { where } \mathbb{X}^{\top} \mathbb{Y}=U D V^{\top}
\end{aligned}
$$

- Match a code to its nearest neighbor(s)
$\tilde{\boldsymbol{\Pi}}^{k}=\operatorname{argmin}\left\|\widetilde{Y}_{k}-\widetilde{\mathbb{X}}_{k} \boldsymbol{\Pi}^{\top}\right\|_{F}^{2}$ where $\widetilde{\mathbb{Y}}_{k}=\mathbb{Y}_{k}^{\top}, \widetilde{\mathbb{X}}_{k}=\left(\mathbb{X}_{k} \widehat{\mathbb{W}}^{[1]}\right)^{\top}$
- Refine rotation using matched data
$\widehat{\mathbb{W}}=\underset{\mathbb{W}: \mathbb{W} \mathbb{W}^{\top}=\mathbb{I}_{p}}{\operatorname{argmin}}\left\|\mathbb{Y}_{\text {match }}-\mathbb{X}_{\text {match }} \mathbb{W}\right\|_{F}^{2}$

Theoretical guarantees

Theoretical guarantees

- Is alignment insensitive to mismatch?
$\left\|\widehat{\mathbb{W}}^{[1]}-\mathbb{W}\right\|_{F}=O_{p}$ (inherent noise + mismatch $)$
Consistency requires sparse mismatch

Theoretical guarantees

- Is alignment insensitive to mismatch?
$\left\|\widehat{\mathbb{W}}^{[1]}-\mathbb{W}\right\|_{F}=O_{p}$ (inherent noise + mismatch $)$
Consistency requires sparse mismatch
- Is code mapping correct?

Correctly map \mathbf{Y}_{i} to \mathbf{X}_{j} if one-to-one;
Consistently estimate the weight if one-to-many

Theoretical guarantees

- Is alignment insensitive to mismatch?
$\left\|\widehat{\mathbb{W}}^{[1]}-\mathbb{W}\right\|_{F}=O_{p}$ (inherent noise + mismatch $)$
Consistency requires sparse mismatch
- Is code mapping correct?

Correctly map \mathbf{Y}_{i} to \mathbf{X}_{j} if one-to-one;
Consistently estimate the weight if one-to-many

- Can we better estimate \mathbb{W} ?
$\|\widehat{\mathbb{W}}-\mathbb{W}\|_{F}=O_{p}$ (inherent noise)
As good as if no mismatch is present

Simulation: iSphereMAP vs Mikolov et. al. 2013 (Google)

Mapping: 1-to-1 match error

Example: ICD-9 code translation between two systems

Example: ICD9-to-10 mapping for suicide and self-inflicted injuries (SSI)
 Manual mapping (GEM)

Take home messages

- EHRs need to be "semantically" translated before being fed into a phenotyping algorithm or statistical model
- Manually curated mappings are imprecise and error prone
- Data driven mappings are scalable and automated

O Based on summary of co-occurrence: does not require individual level data
O Unsupervised: does not rely on training labels

Thank you! Questions?

shixu@umich.edu

[^0]: The mapping consists of both combinations and alternative mappings

